

Overview

Problem: Monocular Visual Odometry

RGB Video Sparse Point Trajectory Camera Motion \rightarrow \rightarrow

Challenges

- Occlusion
- Dynamic Scenes
- Low-texture Area

Our Solution: Temporal Context

- Long-term Point Tracking
- Anchor-based Motion Estimation
- Temporal Probabilistic Modeling

Motivations

Method	Dynamic Detection	Occlusion Handling	Reliability Estimatior
Two-view	Hard	Mostly Implicit	Per matchir
LEAP (Ours)	Easy	Explicit	Per trajecto

By leveraging temporal context and continuous motion, our LEAP can provide more reliable and accurate static trajectories for VO.

LEAP-VO: Long-term Effective Any Point Tracking for Visual Odometry

Weirong Chen^{1,2}*, Le Chen³, Rui Wang⁴, Marc Pollefeys⁴

* Work done for his Master's thesis at Microsoft

- 1. Given a new image, the **keypoint extractor** extracts new keypoints from this frame.
- 2. All keypoints are tracked by **LEAP front-end** across all other frames within the current LEAP window, followed by a track filtering module to remove dynamic and unreliable points.
- 3. The local BA module is applied on the current BA window to update the camera poses and 3D positions of the extracted keypoints by minimizing the reprojection error.

Camera Tracking Performance

Method	Replica			MPI Sintel			TartanAir Shibuya
	ATE (m)	RPE trans (m)	RPE rot (deg)	ATE (m)	RPE trans (m)	RPE rot (deg)	ATE (m)
ORB-SLAM2	0.086	0.030	0.650	Х	Х	Х	0.304
DynaSLAM	0.039	0.017	0.366	Х	Х	Х	Х
DROID-SLAM	0.267	0.036	2.631	0.175	0.084	1.912	0.124
TartanVO	0.406	0.036	2.063	0.238	0.093	1.305	0.246
DytanVO	0.289	0.035	2.146	0.131	0.097	1.538	0.061
DPVO	0.257	0.036	2.635	0.076	0.078	1.722	0.151
LEAP-VO (Ours)	0.204	0.030	1.992	0.037	0.055	1.263	0.029

Replica

Quantitative and qualitative comparisons on Replica, MPI Sintel and TartanAir Shibuya datasets. Our method shows better camera tracking performance.

More Studies

(a) Qualitative results for dynamic track estimation. (b) Qualitative results of pointwise temporal uncertainty measurements. (c) Effect of track filtering module.

Results

MPI Sintel

TartanAir Shibuya

