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Figure 1. General real-time neural rendering pipeline for VR. Left: human neural rendering. Right: scene style transfer.

Abstract

Neural rendering, the data-driven approach of using
neural networks to synthesize imagery, has achieved pho-
torealistic results for generating images of scenes and hu-
mans. However, there has not been a deep investigation on
integrating these neural rendering models in an interactive
virtual/augmented reality (VR/AR) setting. For this project,
we aim to build a pipeline capable of displaying photore-
alistic scenes in VR devices using neural rendering in real-
time. Our work consists of 1) Collecting data and training
models such as SMPLpix specifically for VR camera set-
tings. 2) Integration of human neural rendering model into
Unity & VR device. 3) Optimization of the pipeline for po-
tential issues running with VR devices. Our results show in-
teractive, real-time, and good quality neural rendering ef-
fects for scene style transfer and human rendering on an
Oculus Quest 2.

1. Introduction
There have been increasingly popular demands for gen-

erating high quality, photorealistic, and interactive 3D
scenes for mixed reality applications such as realistic

avatars [5], gaming [3], and immersive communications
[30, 31]. Currently, most existing methods use tradi-
tional computer graphics and rendering pipelines. These
pipelines, including rasterization and ray tracing, rely on ex-
plicit, often physically-based, modeling for geometry, ma-
terial, and light transport [33, 51]. These explicit represen-
tations allow parametrized and editable scenes, giving more
flexibility for development. However, these models are not
effective in terms of rendering photorealistic scenes. Firstly,
obtaining a high-quality geometry model, including its 3D
data, material profile, and color texture, requires expensive
tracking and complex photogrammetry modeling. Addi-
tionally, accurately simulating light transport, especially in-
direct lighting and global illumination, are slow to converge
and computationally intensive. The problem of achieving
photorealism becomes even more challenging when render-
ing human models. This is due to the “uncanny valley” ef-
fect [12], where small distinctions in the generated render-
ing result in negative user experiences. Therefore, although
rendering photorealistic scenes using traditional pipelines
can be obtainable, it becomes very challenging under the
constraint of real-time, interactive applications.

Recent years were marked by incredible progress by the
alternative approach of neural rendering [42, 43]. Neural



rendering does not necessarily use an explicit scene rep-
resentation, and instead, tries to generate imagery using a
data-driven approach. Current work in neural rendering has
already achieved photorealism in areas challenging for tra-
ditional graphics pipelines. For rendering general outdoor
scenes, convolutional networks [38] are being employed to
enhance the quality of video games renderings to photore-
alistic results, adding subtle details in illumination and tex-
ture. In the realm of photorealistic human rendering, SIM-
PLpix [36] builds on pix2pix [18,47], a generative adversar-
ial network (GAN) [13] driven image-to-image translation
model, to achieve realistic texture coloring of the human
body, while maintaining the flexibility and user controllabil-
ity of using an explicit 3D human mesh. However, despite
the tremendous advancements in neural rendering, there has
not been, to the best of our knowledge, a study on imple-
menting these neural rendering models in a VR/AR setting.
This is partly because current neural rendering frameworks
are often computationally intensive and thus face challenges
integrating to the VR pipeline. Our project aims to explore
this direction.

Our goal is to build a pipeline capable of presenting in-
teractive virtual scenes and photorealistic human avatars in
a VR setting and investigate the bottlenecks and challenges
when building such pipelines. Our pipeline integrates the
VR display and user interaction platforms, established VR
development platforms, and state-of-the-art neural render-
ing algorithms for humans and scenes. For rendering hu-
mans, we built on the work of SIMPLpix [36], making cru-
cial adjustments and optimizations to its network architec-
ture and objective functions tailored for the VR setup. For
rendering virtual scenes, we present a style transfer neural
rendering pipeline that allows the virtual scene to be trans-
formed based on the visual style of a given style image. We
use Unity, a popular development platform for graphics and
VR applications, to set up our virtual scenes and run our
neural rendering models as a post-processing pipeline. Our
final results show neural style transfer and human neural
rendering running in interactive frame rates (> 20 FPS) in
an Oculus Quest 2 VR headset. The VR application we built
using this pipeline demonstrates discernible and good qual-
ity style transfer for virtual scenes and human animations in
novel views. Our work shows the feasibility of deploying
lightweight neural rendering models in a VR setting.

2. Related work

2.1. Image to image neural translation

In traditional computer graphics, creating a photorealis-
tic scene requires expensive content creation, i.e., meshes,
light sources, and physically based materials. Moreover,
rendering global illumination scenes with raytracing or pho-
ton mapping is time consuming and difficult to converge.

To solve this problem, many CNN-based models, e.g. deep
render denoising models [46, 53] have been proposed to
post-process the rendered images. Machine learning based
rendering can bypass the explicit scene modeling and syn-
thesize novel images with deep generative models. One
direction of neural rendering is the image-to-image trans-
lation. Semantic photo synthesis [8, 19, 48] maps a user
specified image with semantic labels to a photorealistic im-
age. These methods are underconstrained, since the seman-
tic maps are label silhouettes without geometry information
and ambiguous. Instead of synthesizing images from sil-
houettes, some papers [17,38] enhance the rendered images.
Stephan et al. uses more representative scene features, i.e.,
G-buffers, to enforce the consistency between the input and
output images [38]. Another direction of image-to-image
neural rendering is style transfer, which converts the style of
one image to another style. Early methods require training
one network per style [11, 44, 45]. Most recently, some pa-
pers [9,25] propose to train a single network that can trans-
fer images to multiple styles.

To infer a model in Unity, all networks have to be con-
verted to Open Neural Network Exchange (ONNX) format,
which only supports limited kinds of operators. Moreover,
the requirement of efficiency constrains the depth of the
network. For the style transfer part of our project, we use
one network for each style to perform multi-modal real-time
image-to-image translation.

2.2. Human centric neural rendering

Unlike general objects or scenes, rendering photoreal-
istic humans is especially challenging due to the so-called
“uncanny valley” effects, which refers to the phenomenon
that looking at humanoid objects imperfectly resembled ac-
tual human beings will create strangely familiar feelings
of eeriness and revulsion. Traditional computer graphics
pipelines rely on explicit, parameterized representation with
the control of pose, lighting, material, and shape. How-
ever, such classical methods are usually built on top of the
complex systems for physical and optical modeling. Re-
cently, there is a new trend of rendering photorealistic dig-
ital avatars, which adopts the idea of implicit representa-
tion [28, 30, 40, 50]. While these methods can achieve pho-
torealistic results without computationally intensive mod-
eling, they are usually optimized for a single object only
and require retraining or finetuning when applied to the
novel mesh. SMPLpix [36] extends the flexibility of neu-
ral avatars by integrating the deformable 3D human models
SMPL [29], allowing customized control of body pose and
shape.

Another direction of achieving photorealistic human ren-
dering is to make the mesh rendering pipeline fully differ-
entiable so that it can be optimized end-to-end and learn
the proper implicit representation [22, 27]. Neural point-



based rendering [4] has shown the superiority of a fully
differentiable rendering pipeline over image-to-image post-
processing. With the recent success of NeRF [32], Neural
Actor [26] further combines differential rendering pipeline
with deformable 3D human models to control the human
pose.

3. Method

3.1. Data acquisition

We capture our data using a conventional smartphone
monocular camera, and our data consists of video record-
ings of a person standing. Although we capture our data
in the wild, we apply some constraints to our scenes to en-
sure good quality data for training. First, we require the
person standing in the scene to be static in the world co-
ordinates while keeping a neutral A-pose. This simplified
scene ensures that all body parts of the person are visible
by the camera throughout the capture process, and ambigu-
ities caused by occlusion are minimized. Second, during the
capture process, we move the camera to capture the body at
viewpoints similar to the viewpoint of a VR user interacting
with a virtual human model. We try to keep close viewing
distances to the captured subject. Additionally, to simulate
the viewpoint of a VR user looking up and down, we diver-
sify the elevation and azimuth of the camera as we move
around the subject while keeping the subject at the center
of the frame. Thirdly, we make sure that we have relatively
uniform lighting in the scene environment, no distracting
objects in the background, and that the captured person is
wearing clothes with uniform colors with no shiny or reflec-
tive materials. This constraint in the scene lighting makes
it easier for the model to register body parts to the correct
texture while also giving us accurate segmentation of the
captured human from the images.

Once we have captured our video, we process the frames
to obtain the training data that is compatible with our VR
framework (Figure 2). We first do a segmentation pass for
each frame of the video so that we are only left with the
person being captured, while other parts of the video are
replaced with white background. We then use the tool kit
provided by the authors of SMPLpix [36] to transform the
video into an SMPL mesh dataset. For each frame in the
video, we first use the image-based pose estimation model
OpenPose [7] to extract the 2D body key points of the per-
son in the frame. We can then infer the 3D human model
using the SMPLify-X method [34], which uses an SMPL-X
3D human model to fit the 2D body key points identified.
Finally, for each frame, we get the deformed 3D SMPL-X
human model inferred as a 3D mesh and the camera projec-
tion data that allows us to project the mesh back to the same
location on the image.

Our last step to generating our dataset is to generate the

Figure 2. Processing capture video to VR compatible training data

SMPL-X human model images for each video frame using
Unity. The SMPL-X model uses vertex colors to identify
the body location of the human. However, Unity only sup-
ports texture maps instead of vertex colors to the best of
our knowledge. As a workaround, we implemented cus-
tom mesh processing scripts in the 3D graphics software
Blender that allows us to bake the vertex colors of the
SMPL-X mesh into texture maps. We also implemented
automation scripts in Unity to project the textured meshes
in the correct image location and capture the SMPL-X im-
ages. By capturing the SMPL-X human model in Unity, we
ensure that the neural rendering model input and the input
in the VR application have the same color profile.

3.2. Model training

We build upon the open-sourced SMPLpix [36] imple-
mentation and optimize the method specifically for VR us-
age. We describe our modified SMPLpix [36] pipeline in
the following sections.

3.2.1 Network architecture

Due to the operator constraints of ONXX and Barracuda,
the original open-sourced SMPLpix [36] network cannot be
imported to Unity. Additionally, the real-time objective re-
quires a light-weight network design. We therefore design
a simple U-Net architecture and verify its usability on SM-
PLpix [36]’s open sourced data. We provide details regard-
ing the network architecture in Table 1.

3.2.2 Data augmentation

An VR environment offers diverse viewpoint variations. To
train a model capable of synthesizing novel views similar
to those in VR, we enhance the data augmentations used
in SMPLpix [36]. Namely, we use camera rotation of ±
60°, camera translation of ± 100 pixels and random scaling
factors from 0.2 to 2.

3.2.3 Training objectives

To better accommodate VR settings, we use a hybrid set of
training objectives including VGG feature reconstruction,



input layer output

x ReLUInstanceNormConv(filter=9× 9× 8, stride=1) conv1 y
conv1 y ReLUInstanceNormConv(filter=3× 3× 16, stride=2) conv2 y
conv2 y ReLUInstanceNormConv(filter=3× 3× 32, stride=1) conv3 y
conv3 y ResidualBlock(n channels=32) res1 y

res1 y+conv3 y ResidualBlock(n channels=32) res2 y
res2 y+res1 y+conv3 y ResidualBlock(n channels=32) res3 y

res3 y+res2 y+res1 y+conv3 y ResidualBlock(n channels=32) res4 y
res4 y+res3 y+res2 y+res1 y+conv3 y ResidualBlock(n channels=32) res5 y

res5 y+conv3 y ReLUInstanceNormUpsampleConv(filter=3× 3× 16, stride=1, upsample=2) deconv1 y
deconv1 y+conv2 y ReLUInstanceNormUpsampleConv(filter=3× 3× 8, stride=1, upsample=2) deconv2 y
deconv2 y+conv1 y Conv(filter=9× 9× 3, stride=1) RGB

Table 1. Network architecture.

LPIPS reconstruction, pix2pixHD GAN loss and Head
loss, elaborated as follows.

VGG reconstruction loss. Following recent advances in
content reconstruction [21, 36], instead of using standard
L1 or L2 reconstruction in the RGB domain, we use L1
reconstruction of features from VGG16 pre-trained on Im-
ageNet [10], calculated by L1 distances of the activations.
This gives similar effects as using a GAN loss [14], with-
out employing adversarial training [8]. Following SM-
PLpix [36], the VGG reconstruction loss is computed as:

LVGG(Igt, Irecon) =

5∑
i=0

1

2(5−i)

∥∥∥f (i)
VGG(Igt)− f

(i)
VGG(Irecon)

∥∥∥ (1)

where f
(i)
VGG(I) refers to activations at layer i of the pre-

trained VGG network, Igt and Irecon refers to the ground
truth image and the reconstructed image respectively.

LPIPS reconstruction loss. VGG network used to com-
pute VGG loss is trained on ImageNet [10] for classification
task, which indicates that its learned features may not be
entirely suitable for reconstruction tasks. To address this,
Learned Perceptual Image Patch Similarity (LPIPS) [52]
was proposed initially as an evaluation metric. Instead of
training for ImageNet [10] classification, deep networks
used to extract features in LPIPS [52] are trained specif-
ically with a dataset of human perceptual similarity judg-
ments, which more appropriately reflects human percep-
tion preferences. Similar to VGG features, LPIPS [52] can
be used as a reconstruction objective, and is generally a
stronger objective than standard VGG loss as mentioned
in [20, 37]. LPIPS [52] loss is computed as:

LLPIPS(Igt, Irecon) =∑
i

τ (i)(ϕ(i)(Igt)− ϕ(i)(Irecon))
(2)

where ϕ is the feature extractor network(for which we use
pre-trained AlexNet [24] provided by LPIPS [52] authors)
and τ is an operator normalizing and transforming extracted
deep features across the ith layer to scalar score.

pix2pixHD [47] GAN loss. Even though not provided in
SMPLpix [36]’s open sourced implementation, we found
adding pix2pixHD [47] style GAN training to be helpful.
Define the neural renderer as the generator G, and corre-
sponding discriminators as D1, D2, D3 operating under dif-
ferent resolutions, pix2pixHD [47] GAN objective can be
written as:

min
G

max
D1,D2,D3

LGAN(G,D1, D2, D3),where

LGAN(G,D1, D2, D3) =
∑

i=1,2,3

[
E
x,y

[
logDi (x, y)

]
+E

x

[
log (1−Di (x, G (x)))

]] (3)

Head loss. With the previous methods, we are able to re-
construct the human body with high fidelity. However, the
multi-scale settings in VR and mis-alignment between mesh
and image makes it extremely difficult to capture the fine
details around face areas. Inspired by LookinGood [30], we
attempt to resolve this issue by introducing a head loss into
our system. Due to the lack of ground truth segmentation
mask, we apply a color filter on the projected mesh to ob-
tain a rough location of the head, and crop a bounding box
around it. It is then resized to 512 × 512 and fed into the
network for reconstruction.

3.3. Framework

The goal of our project is to develop an application that
can apply human/scene neural rendering to the VR setting.
To achieve this, we need to integrate the game engine, the
neural rendering module, and the VR display altogether.
With the rich functionalities and wide community support,



Unity [15] is selected as our developing engine, which pro-
vides the 3D platform and VR toolkits for developing gen-
eral VR applications. Neural rendering is achieved by the
Barracuda package developed by the Unity-Technologies,
allowing users to perform model inference using a pre-
trained network via Unity. In addition, we are given the
Oculus Quest 2 as the VR hardware, which has wide pop-
ularity among the young generation and it is very easy to
use. It supports both all-in-one (compute on VR) mode and
oculus-link mode (compute on PC), and we use the latter
for this project to achieve a higher frame rate.

3.3.1 Unity

Unity [15] is one of the most widely used video game en-
gines for 3D game development, architecture, engineering,
construction, etc. With cross-platform support, the app can
be easily deployed to a variety of desktop, mobile, console,
and virtual reality platforms. For developing VR applica-
tions, Unity contains the XR Interaction Toolkit [2] which
provides the high-level, component-based, interaction sys-
tem. It contains the basic framework that integrates 3D and
UI with the Unity events under the VR setting so that we
can easily obtain the camera pose and controllers’ actions
from the Oculus Quest 2 in real-time. The remaining com-
ponents, including events and UI, are similar to developing
a general 3D game using Unity.

3.3.2 Barracuda

Another reason that we choose Unity as the development
platform is that it contains the Barracuda package [1] for
neural inference. The Barracuda package is a lightweight
cross-platform neural network inference library for Unity,
supporting both CPU and GPU network inference. Given
a pre-trained neural rendering model in PyTorch, the first
step is to first convert it to ONNX format, which can be
recognized by the Barracuda package. In our application,
Barracuda is used as a post-processing module that takes the
raw rendered texture from the Unity built-in render pipeline,
post-processes it with the pre-trained network inference,
and copies the result back to the output texture. As the re-
sult, users can see the neural rendered result from the cur-
rent camera view.

3.3.3 Pre-processing

Before passing the raw rendered results into the network,
we need to perform pre-processing steps of down-sampling
and handling the distortion. The original view obtained
from Oculus is of resolution 1600×1600, much higher than
the resolution of our training data (512× 512). We need to
down-sample the resolution to 512 as the pre-trained hu-
man rendering model is very sensitive to the input size. Be-

Figure 3. Human Neural Rendering Pipeline

sides, the raw rendered result from Oculus also contains a
distortion effect that has an irregular round and non-empty
boundary. Without transferring the background to a regular
square shape or filling it with the white color as the same
in the trainset, the model’s output will become very blurry.
Since we do not have the distortion parameters, the back-
ground is handled by cropping the central 720 × 720 part
of the whole image, which directly results in a square and
white sub-figure.

3.3.4 Pipeline

The whole pipeline for human neural rendering is shown in
Figure 3. Given the real-time VR camera pose and SMPL
human mesh, we use the Unity multi-pass built-in render
pipeline to obtain the raw rendered view from the corre-
sponding camera pose and store it in the input texture. In
the neural rendering stage, we prepare a pre-trained human
neural rendering network in ONNX format and load it to
the Barracuda. The input texture is firstly pre-processed
with the cropping and down-sampling, then is passed to the
neural rendering module for inference, and is finally post-
processed up-sampling and copied back to the output tex-
ture. As the result, the user can see the photorealistic human
in the VR from multiple views.

Besides the human neural rendering, the proposed
pipeline can also be generalized to other neural post-
processing tasks such as scene style transfer. The only
modification needed is to replace the human mesh with the
scene mesh and provide a pre-trained style transfer model
in ONNX format.

3.4. Implementation

We make this project into an application on the Windows
platform. Users can use a USB-C cable or air link of Oculus
to receive the image from the computer and interact with
the virtual environment. Our UI allows users to apply any
neural network model to any meshes. The application has
good visual quality in the style transfer part and successfully
generates novel views in the neural human rendering part.
The program achieves real-time performance with 20 FPS
on NVIDIA GeForce RTX 2060 Max-Q.



Figure 4. Human neural rendering of team members

4. Experiment
4.1. Training detail

Following SMPLpix [36], we use a two-stage training
strategy. In stage 1, we train the network with only VGG
loss and LPIPS loss. In stage 2, we additionally introduce
pix2pixHD GAN loss. Since pix2pixHD GAN loss is not
provided in SMPLpix [36]’s open-sourced implementation,
we re-implement this part following pix2pixHD [47], while
use settings from original SMPLpix [36] paper. Numeri-
cally, we can write the overall loss as:

L(Igt,Irecon) = LVGG(Igt, Irecon)

+ λLPIPSLLPIPS(Igt, Irecon)

+ λadv

∑
k=1,2,3

Di(Irecon)

+ λheadLhead(Igt, Irecon)

(4)

where in stage 1, we use λLPIPS = 0.1 and λadv = 0; In
stage 2, we use λLPIPS = 0.1, λadv = 0.1 and λhead = 0.1.
Models are trained with Adam optimizer [23] with an initial
learning rate of 1.0e-3 using ReduceLROnPlateau scheduler
with patience 50. We run each stage for 48 hours on a single
NVIDIA GTX TITAN XP with batch size 6.

4.2. Qualitative results

Our pipeline can be generalized to arbitrary neural post-
processing. We apply such a pipeline to human neural ren-
dering and style transfer. Both applications can run in real
time and have a promising visual quality.

4.2.1 Human rendering

We trained multiple models for each person in our group,
which can be seen in Figure 4. While most of the train-
ing pairs are captured in the standing poses, Figure 5 shows
the generalization ability of our networks to arbitrary poses.
Our pipeline can not only be utilized to static human mesh
but also dynamic human mesh.

As can be seen in Figure 6, our networks can restore the
wrinkles on cloth and the pattern on shoes. When render-
ing some poses of the dynamic avatar, the texture of arms

Figure 5. Human neural rendering of the dynamic mesh

may disappear. As has been described before, our training
set does not contain these poses, and this failure can be al-
leviated by capturing a new training set with more kinds of
poses. Since in our pipeline, we down-sample the input and
up-sample the output, the face part is blurry. Another rea-
son for such an artifact is that, to eliminate the effect of the
light source and surface material, our input only contains
the color information, the geometry information is lost.

4.2.2 Scene style transfer

Considering the requirement for efficiency and some limita-
tions of ONNX, we use a simple U-net described in [21] as
our style transfer model. The input images, output images
and corresponding style images are shown in Figure 7a and
Figure 7b.

The style transfer part of our pipeline supports multiple
resolution input. Using higher resolution as input can pre-
serve more patterns and edges of the input images.

4.3. Quantitative results

For quantitative results, we compare our modified model
with vanilla open-sourced SMPLpix [36] implementation.
We capture data and train a model for each of our four team
members.

4.3.1 Data split

To ensure a fair comparison, we select 100 frames of diverse
viewpoints for each instance as the test set. Each frame
is then randomly augmented using the same transformation
parameters for training. Data samples for each instance are
repeatedly augmented for 50 times to ensure a small bias,
yielding 5000 test images per instance. We train and evalu-
ate our model on resolution 512× 512.

4.3.2 Evaluation metric

Follow prior works [35, 36], we report PSNR, SSIM [49]
and LPIPS [52] for novel view synthesis results. Since as
a human rendering model, certain body parts, e.g. faces,
will play an important role in human perception which can-
not be fully captures with reconstruction metrics, we addi-
tionally report fidelity results using GAN metrics including
FID [16], KID [6] and IS [39]. We briefly introduce these



Figure 6. Rendered human from various camera viewpoints

(a) Park scene

(b) Building scene

Figure 7. Scene style transfer

evaluation metrics here and refer our readers to the corre-
sponding papers for details.

IS: Before FID and KID, Inception Score [39] was gen-
erally used as the metric for evaluating generated sample
quality and diversity. This is done by applying a Inception-
V3 network [41] pre-trained on ImageNet [10] to the gen-
erated images and calculating the IS via the conditional la-
bel distribution p(y|x) with the marginal label distribution
p(y) =

∫
p(y|x)p (x = G(z)) dz as follows:

IS(x) = exp (Ex [DKL (p(y|x) || p(y))]) .

The conditional label distribution p(y|x) should have low
entropy (so that the generated images contain meaningful
objects) and marginal label distribution p(y) should have
high entropy (so that the generated images are diverse), thus
leading to a higher score value.

FID: Instead of evaluating on the generated images
alone, Frechet Inception Distance additionally considers
the real images used for training by comparing their dis-

tributions. It utilizes the Inception-V3 network [41] pre-
trained on Imagenet [10] to extract image features too, and
then compares the multidimensional Gaussian distributions
N(µr,Σr) and N(µg,Σg) of the features from real and
generated images respectively. FID is then calculated as
follows:

FID = |µg − µr|2 + tr(Σg +Σr − 2(ΣgΣr)
1/2)

KID: Similarly to FID, Kernel Inception Distance is cal-
culated by squared Maximum Mean Discrepancy (MMD)
with a cubic polynomial kernel between Inception repre-
sentations to achieve unbiased estimation.

4.3.3 Result

We show evaluation results on the four instances in Table 2.
We can conclude that our modified model outperforms the
vanilla open-sourced model for most metrics on our four
instances.



reconstruction metrics GAN metrics
Instance Method PSNR ↑ SSIM [49] ↑ LPIPS [52] ↓ FID [16] ↓ KID [6] ↓ IS [39] ↑

Instance 1 Vanilla 26.170 0.964 0.028 156.079 0.146 2.830
Modified 26.235 0.963 0.018 152.828 0.142 2.891

Instance 2 Vanilla 27.798 0.961 0.039 168.427 0.167 2.768
Modified 28.644 0.966 0.013 181.967 0.167 2.983

Instance 3 Vanilla 28.310 0.971 0.021 153.073 0.144 3.275
Modified 28.962 0.976 0.013 149.920 0.141 3.471

Instance 4 Vanilla 31.762 0.984 0.016 170.880 0.244 3.090
Modified 30.692 0.981 0.009 164.245 0.150 3.234

Table 2. Quantitative results on the four instances.

reconstruction metrics GAN metrics
Method PSNR ↑ SSIM [49] ↑ LPIPS [52] ↑ FID [16] ↓ KID [6] ↓ IS [39] ↑
without LPIPS [52] loss 27.942 0.964 0.042 170.233 0.160 2.700
without head loss 26.101 0.963 0.020 156.347 0.137 3.093
without GAN loss 27.769 0.972 0.032 172.776 0.174 2.759
full model 26.235 0.963 0.018 152.828 0.142 2.891

Table 3. Ablation study results.

Figure 8. Learned face rendering (top) and body rendering (bot-
tom) with head loss.

4.4. Ablation studies

We perform a thorough ablation study to verify our de-
sign choices by removing the key components one by one
and training models under identical settings as the full
model, shown in Table 3. We see that as expected, VGG
loss and LPIPS [52] loss simulates part of GAN training
results. Therefore, the improvement achieved by utiliz-
ing GAN training is less significant. In addition, using
LPIPS [52] and GAN loss naturally implies trade-off from
reconstruction and the capture of more fine details. We can
also observe that unlike in LookinGood [30], head loss does
not benefit the model. Figure 8 shows that even though the
head avatar itself can be jointly learned, the effect is not
successfully transferred to whole body rendering. This is
potentially due to the lack of supervision given only the col-
ored mesh 2D projection, which is lack of connection with
the whole body model.

Figure 9. Mis-alignment between mesh (left) and ground truth
image (right), zoomed in face area.

5. Conclusion and Future work

In this project, we integrate the neural rendering to the
Unity render pipeline and VR device. Our pipeline can use
an arbitrary neural network as a kind of post-processing
before the images are sent to the VR headset. We imple-
ment neural human rendering and style transfer under our
pipeline. One of the characteristics of VR applications is
that, the camera position varies a lot when the user is walk-
ing or shaking head. To make sure the rendered human
is correct and consistent, we create a training data collec-
tion pipeline inside Unity and add corresponding augmen-
tations during training to model potential various viewpoint
changes. Additionally, we add LPIPS loss and GAN loss to
restore more details of humans.

Our next step is to improve the quality of neural human
rendering in VR, to solve the problem that the texture of
rendered humans would be incorrect when the camera is
too close or far away. We empirically find that large scale
variance dramatically harms the performance of our model.
One way to resolve this is to train multiple networks to take
care of different scale range separately. During inference
stage, corresponding network can be automatically selected
based on user’s distance to the mesh.

Another issue is the mis-alignment of the extracted mesh
and RGB image due to using simple colored mesh, shown in
Figure 9. This further increases the difficulty of accurately
render fine details, e.g. face details. This is solvable by
providing more guidance for the neural renderer other than
only colored mesh, e.g. translate a textured human mesh or
colored sparse points cloud [36] to photorealistic human.

Acknowledgement

We thank ETH Computer Vision and Geometry group
for providing the materials and hardware for this project.
We also specially thank our supervisor, Dr. Sergey Prokudin
for proposing this interesting topic and offering us guidance
and additional device for our project.



References
[1] Introduction to barracuda: Barracuda: 1.0.4. 5
[2] Xr interaction toolkit: Xr interaction toolkit: 0.9.4-preview.

5
[3] Tomas Akenine-Mo, Eric Haines, Naty Hoffman, et al. Real-

time rendering. 2018. 1
[4] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry

Ulyanov, and Victor Lempitsky. Neural point-based graph-
ics. In Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XXII 16, pages 696–712. Springer, 2020. 3

[5] Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian
Theobalt, and Gerard Pons-Moll. Detailed human avatars
from monocular video. In 2018 International Conference on
3D Vision (3DV), pages 98–109. IEEE, 2018. 1
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